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The method of multiple scales is used to derive several different systems of evolution equations
for multiple interacting waves propagating in a strongly dispersive, weakly quadratically nonlinear
optical material. Several two- and three-wave signaling problems are discussed. Among the problems
discussed are the interaction between a low-frequency field and the optical frequency field and
between the optical frequency field and its second-harmonic field. In the efficient phase-matching
regime, three-wave-mixing equations are obtained where quadratic nonlinearities dominate. Here,
methods are discussed for cascading second-order nonlinearities to obtain intensity-dependent effects.
For the large-phase-mismatch regime, cross-phase-modulation equations, analogous to fiber optics,
are obtained where cubic nonlinearities dominate, and intensity-dependent modulations beyond
cascading are obtained. Finally, the three-interacting- (sum frequency) wave problem is examined
for small and large asymptotic phase-mismatch regimes. Analytical solutions to the derived evolution

equations are given.

PACS number(s): 42.70.Nq, 42.81.Dp

I. INTRODUCTION

Various asymptotic far-field evolution equations due to
wave-wave interactions may be obtained for multiple in-
put waves propagating in a quadratically nonlinear opti-
cal material. Traditionally, for three input waves, three-
wave resonance equations are obtained for quadratic non-
linear materials that describe various well known x(?
wave processes such as second-harmonic generation and
sum frequency mixing [1-3]. In optics, the three-wave
resonance equations are usually derived from the slowly
varying envelope approximation (SVEA), a popular per-
turbation method based on a Fourier series type expan-
sion [4]. However, SVEA cannot be used to derive cer-
tain types of asymptotic far-field equations that arise
from higher-order perturbation theory because it has no
explicitly defined perturbation parameter. A more ro-
bust method that is valid to any perturbation order is
the method of multiple scales (MMS). This more robust
method is utilized in this paper to derive nontraditional
asymptotic wave-wave interaction processes for quadrat-
ically nonlinear (x(?)) optical materials. For example,
using MMS we derive various intensity-dependent mod-
ulation processes for x(?) materials that are traditionally
associated with x(® materials.

MMS is a self-consistent perturbation method devel-
oped by Cole [5], Sturrock [6], and Sandri [7] that ex-
pands both the field and independent variables in terms
of a well defined perturbation parameter. Canonical
asymptotic far-field equations are obtained by eliminat-
ing secularly growing forced terms that come in at higher-
order perturbation theory. The far-field equations are
canonical in the sense that the same types of equations
are derived from different physical systems. For example,
the three-wave resonance equations are canonical because
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besides optics, they can also be obtained in fluid flows [8]
and plasmas [9]. It must be noted that MMS may be
used to derive the three-wave resonance equations that
agree with SVEA. But here we are interested in deriving
other canonical evolution equations not typically associ-
ated with quadratic nonlinear optical materials. For ex-
ample, using MMS and proceeding to second-order per-
turbations, it has been recently shown [4,10,11] that the
nonlinear Schrodinger equation is obtained for a single in-
put wave propagating in a x(?) type material. Therefore,
a quadratic nonlinear material may support intensity-
dependent and self-modulation effects under appropriate
conditions. This result is usually not associated with x (%
materials but is well known for x(® materials, such as low
attenuation glass optical fibers [12]. Here is one instance
where MMS predicts a wider range of phenomena, for x(%
materials than SVEA. The nonlinear Schrédinger equa-
tion arises in many other physical systems [13-15] and
therefore is a canonical asymptotic evolution equation.
The present work is a generalization of the scalar one-
dimensional problem presented in [10,11]. Here we apply
two or three input electric fields to a quadratic nonlin-
ear optical medium. This typically results in a system of
two or three coupled partial differential equations derived
from MMS. Several different problems are examined. At
first we consider the effect of a constant dc field on the di-
electric medium, which results in a nontraditional asymp-
totic wave-wave interaction process leading to a modi-
fied nonlinear Schrodinger equation as the fundamental
optical frequency wave propagates through the medium.
Then, we examine the effect of an applied slowly varying
(microwave frequency) field interacting with the funda-
mental harmonic optical frequency wave and show that
under appropriate conditions, a Schrodinger-type equa-
tion is coupled to a Korteweg—de Vries equation; an-
other nontraditional asymptotic wave-wave mixing pro-
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cess for x(?) materials. Here, there is a long to short
wave resonance if the phase velocity of the low-frequency
field is close to the group velocity of the fundamental
harmonic. We then consider the interaction of funda-
mental and second-harmonic optical waves. For rela-
tively poor phase-matching conditions, coupled nonlin-
ear Schrodinger equations are obtained that are analo-
gous to the cross-phase-modulation equations of optical
fibers [4,16]. In this nontraditional asymptotic regime the
quadratic nonlinear medium behaves like a cubic nonlin-
ear medium with intensity-dependent effects. For good
phase matching equations similar to the three-wave res-
onance equations are obtained that include group veloc-
ity dispersion terms. This is the traditional asymptotic
wave-wave process for x(3) materials. However, we pro-
vide interesting solutions to the wave processes.

The theory presented in this paper may be applied to
specific x(?) materials. It should serve to initiate fur-
ther experimental studies. This, in turn, may lead to
different pulse-shaping applications of x(?) materials in
optical communications. Most of these nontraditional
effects may be observed in bulk materials or thin film
waveguides that are tens of centimeters long. These ma-
terial lengths are longer than millimeter lengths usually
prescribed for harmonic-generation experiments. Pulse
amplitude and widths should be chosen to minimize the
effect of material absorption. Quadratic nonlinear ma-
terials in experiments should be chosen for low absorp-
tion and high damage thresholds. A suitable material
may be potassium titaryl phosphate (KTP) as suggested
in Refs. [10,11]. Numerical experimental conditions on
nontraditional wave-wave processes will be presented in
another paper.

So far, all the asymptotic equations are obtained by
considering only scalar properties of the medium. Ef-
ficient phase matching is difficult to achieve for all in-
put waves with the same polarizations propagating in the
same direction. Finally, we take into consideration tensor
properties of the medium (for type-II phase matching)
when discussing interaction of waves of different polar-
izations for sum frequency generation.

Analytic solutions to the derived systems of evolution
equations are obtained by reducing the complex valued
coupled partial differential equations to systems of real
valued ordinary differential equations by appropriately
chosen phase parameters accompanying the slowly vary-
ing field amplitudes. Compatibility conditions are then
given to ensure that the solitary-wave solutions are real.
This technique enables the analytic description of solu-
tions with nonzero walk-off parameters and nonzero dis-
persion terms. Other interesting solutions are given when
dispersion terms are neglected and when one field is weak
compared to the others as in nondepleted pump approx-
imations.

II. PROBLEM FORMULATION

We begin with the scalar medium model as presented
in [10,11]. We allow two (or three) input waves of ar-
bitrary shape, propagating in free space, to encounter a
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semi-infinite quadratic nonlinear material at £ = 0. We
assume normal incidence at the boundary and that prop-
agation is in the z direction, the electric fields are polar-
ized in the z direction, and their corresponding magnetic
fields are in the negative y direction. Most problems
in this paper deal with electric fields polarized in the z
direction. However, in some problems, additional elec-
tric fields may be polarized in the y direction, so that
their associated magnetic fields are in the positive z di-
rection. The electric and magnetic fields are transverse
to the direction of propagation, but they are tangential
to the boundary. Therefore, for nonconstant fields, we
impose boundary conditions that the tangential electric
and magnetic fields be continuous across the boundary
at £ = 0. We also impose a radiation condition so that
there are no incoming waves from infinity in the nonlinear
material. We are given one slowly modulated field prop-
agating at optical frequency w. For the two input wave
problems, the other given field will be either a constant
dc electric field applied to the medium or a slowly varying
dc field (at microwave frequency) or a slowly modulated
wave at the second harmonic 2w. The resulting far-field
evolution equations depend upon the type of input fields
and also upon whether there exists a long to short wave
resonance or harmonic to fundamental wave resonance.

The derived evolution equations depend not only on
the quality of phase matching but also depend upon the
pulse widths and the strength of the nonlinear coupling
coefficients. In the three-input-wave problems, we as-
sume that all frequencies lie in the optical range and we
allow the medium to be anisotropic.

We consider nonlinear materials that can be described
by an ensemble of identical classical and harmonic oscilla-
tors with small quadratic restoring forces and a resonant
frequency wp far from w (or 2w). From the ensemble we
obtain a macroscopic polarization P that is coupled to
the electric field E.

The above problem formulation translates into the fol-
lowing nondimensionalized equations. In free space the
electric field E satisfies Maxwell’s wave equation with
zero source terms

, 0% - 8% .
< 52 E 5 E=0. (1)

In the medium, the electric field F and the polarization

P are coupled in the following manner:

—az—+w2 P=fE - ap?_ 2,9 p (2)
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with wo the dimensionless resonant frequency (equal to
1), +/f the dimensionless plasma frequency, v the di-
mensionless damping coefficient, and ¢ the dimensionless
speed of light (equal to 1). The dimensionless perturba-
tion parameter € is defined as

dT?eoE}
Ne ~

e~ =

(4)
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It is a dimensionless ratio of the following dimensional
variables: d is the nonlinear restoring force coefficient, 7'
is a typical time scale wy 1 (inverse resonant frequency),
€o is the permittivity of free space, Ej is the typical field
strength, N is the electron density, and e is the electron
charge. Note that F = E*/E}, where E* is the given
dimensional field.

The strength of €¢* can be adjusted by choosing the
typical time scale T' and field strength Ej. We allow o
to be 1 or 2 depending on the problem; in Refs. [10,11],
«a was chosen to be 1.

Equations (2) and (3) model noncentrosymmetric crys-
tals such as quartz and KTP. In general, the restoring
force d is a tensor of third rank, but for now we may as-
sume that it is a scalar because we chose our crystal axis
and polarizations so that only one component of d, E,
and P is required.

It is convenient to operate on Eq. (3) by (g—; + wg)
and replace Eq. (3) by the fourth-order equation

2, , 02 82 82
(ﬁ*“’o) (C@‘@)E‘f@E

8?2 83
= —Gabﬁpz - 62’)’Wp. (5)
Equation (5) is important because the dispersion prop-
erties of the medium are included and the polarization
terms act as known forced terms that come in at higher
orders. It is also important that all secularity conditions
on the shortest and fastest scales for MMS are determined
from the € independent left-hand side. Equation (5) de-
scribes the medium accurately as long as we remain in the
optical frequency range between the infrared and ultravi-
olet resonance bands. If we cross the infrared resonance
band, Eq. (2) must be supplemented by additional oscil-
lators at each resonance band. The refractive index will
increase across the resonance band when the frequency
is lowered (as explained in [11]). To accurately describe
the linear refractive index, we must replace Eq. (2) by

P = / X (t — 7)Ex(r)dr

+e / drydrax ey (t — T1,t — 72) Bi (1) Ea(72).
(6)

The subscripts jk{f refer to the field components [17].
These subscripts were suppressed because we assumed
j =k = £ = z. Now we must solve Eqgs. (3) and (6)
in conjunction. If we substitute (6) into (3) we have
an integro-differential equation. It is interesting to note
that Eq. (6) may be derived from Eq. (2) by apply-
ing Fourier transforms to perturbation theory. The lin-
ear and quadratic susceptibilities xﬁ), xﬁ)l are specified
and restricted by Eq. (2) to the optical frequency range.
However, we allow x(1 and x(® to vary as needed to
describe the medium. The integro-differential equation
formulation described by Egs. (6) and (3) is equivalent
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to the fourth-order differential equation given by Eq. (5).
They are identical in the optical frequency range. Thus
we may derive our asymptotic far-field equations from
either formulation, depending on our needs.

We also have the boundary conditions

E(0,t) = E(0,t) , H(0,t) = H(0,t), (7)

with H, H being, respectively, the magnetic fields in free
space and the medium. Now we shall apply MMS to the
above system of equations.

MMS is a singular perturbation technique that seeks
uniform or sinusoidal solutions after eliminating arti-
ficial secularly growing terms by expanding both de-
pendent and independent variables in a perturbation
series [5]. We assume that the independent vari-
ables (z,t) become the set of 2n independent variables
($0a$17m2’z3,'"am‘n:;t07t1,t27t.3a~--,tn) with (Eo =
z,to =t) and z; = €'xzo, t; = €'t fori=1,2,...,n.

Depending on our problem, (z,t) is expanded to either
three or four spatial and time scales. The (xzq,%o) vari-
ables are, respectively, the shortest distance and fastest
time scales. The other independent variables are longer
distance or slower time scales. The derivative operators

9 and 2 are expanded as

Bz 8t

o @ 8 ,0 40 L O

5.';_6—1:[;+€8$1+68m2+68:c3+ +€8.’Dn’
(8)
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We assume further that the P, E, E fields are regarded
as functions of the 2n independent variables and have an
asymptotic representation of the form

P(xo,fﬂl,...,:lln;to,tl,...tn)
= PO(:EO,EI’-' '7zn;t07t17'~~tn)

+€eP1 (o, 1, .-+, Tnjto, b1, .. -tn)

+62P2((E0,$1,...Itn;t(),t]_,...tn)+"' . (10)

Similar expansions exist for E, E, H, H. We substitute
expansions (8)—(10) into Egs. (1), (2), (5), and (7), or
(1), (3), (6), and (7), depending on the problem, and
collect terms of the same order of €. At each perturbation
level, we obtain equations for each harmonic component
of the electric field. At higher perturbation orders, forced
resonant or secular terms for each harmonic component
are set to zero. These secularity conditions produce the
asymptotic far-field equations that depend on the slow
time and long distance scales. We now summarize some
results.

For the O(1) perturbation level boundary value prob-
lem we assume the electric field in free space has the
following form for each harmonic component:

E = @ (t1 — x1/c) explimw(zo/c — to)]
+bm (t1 + 21 /) exp[—imw(zo/c + to)] + c.c., (11)
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where @, is the given slowly modulated envelope that
is dependent on the (¢1,z;) scales. The reflected wave
envelope I;m is unknown and has to be determined from
the O(1) boundary conditions. The integer m indicates
the harmonic component. For m = 0,1,2, we have, re-
spectively, the slowly varying dc field, the fundamental
harmonic, and the second harmonic.

In the medium, we assume that the O(1) electric field
has the following form for m = 1,2 harmonic compo-
nents:

Eo = am(z1, 22, T3;t1)
x exp{imw[zok(mw)/(mw) — to]} + c.c. (12)

For slowly varying dc field (m = 0) we assume further
that

Eq = A(t1 — z1/vo; 2, 23) + c.C. (13)

with A = a¢ and vo = v, where vo = @/k(@) is the
given phase velocity associated with the centroid @ of
the wave packet. Note that @ <« w and v is the phase ve-
locity due to an O(1) low-frequency field. Here the a,, for
m = 0,1,2 are the unknown transmitted wave envelopes.
Substituting the assumed form for the O(1) electric field
for the m = 1,2 components shown by Eq. (12) into
Eq. (5) for the O(1) perturbation level, we obtain the
dispersion relations

D(k(mw),mw) = c2k?(mw)(m*w? — wi)

—m*w? + m3(wi + flw? =0. (14)

The wave numbers k(mw) may be expressed in terms of
their applied frequencies. The reflected and transmitted
wave envelopes can be expressed in terms of the given
incident field by applying the boundary conditions (7)
for each harmonic (m = 0,1, 2):

= Um —C .

bm(tl) = v +c a'm(tl) ) (15)
20m .

am(tl) = v +c am(tl) ’ (16)

with v,, = mw/k(mw) the phase velocity for m =1,2,
whereas v = @/k(@) for m = 0 denoting the O(1) low-
frequency field.

The above O(1) results appear to be the standard re-
sults from linear theory; however, Eqgs. (15) and (16) have
been generalized as in [4,10,11] to include any pulse shape
that can be parametrized by the t; time scale. Similar
results are obtained for the three-wave problem.

In this paper we are primarily interested in how the
O(1) fields are slowly modulated and seek the resulting
envelope or far-field equations obtained from secularity
conditions that come in at higher perturbation orders.
We are not interested in the O(e) electric fields generated
by the bounded source terms and will not present the
O(€) boundary value problems since they have already
been dealt with in [4,10,11].

The O(e) secularity conditions imply that the O(1)
fields obey first-order partial differential equations on
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the (z1,t1) scales for the optical frequency waves. The
O(€?) secularity conditions imply that O(1) fields obey
second-order partial differential equations. Usually there
exist second-order derivatives on the (x,t;) scales and
first-order partial derivatives on the (z2,t;) scales. The
physically interesting canonical far-field equations in
the optical frequency range appear at this perturbation
level. They take the appearance of various nonlinear
Schrédinger equations. At O(e®), we find that there may
be small corrections to the effective nonlinear refractive
index as shown in [11]. These corrections are due to a
self-induced O(e) rectified field propagating at phase ve-
locity V. This is not to be confused with the given O(1)
low-frequency field. For the given applied slowly varying
O(1) low-frequency field dependent on the (z1,t1) scales,
we find that the secularity conditions at O(e?) result in
a dispersionless wave equation. This wave propagates at
phase velocity v. Now, we must proceed to the O(e*) per-
turbation theory. The secularity conditions imply that
the partial differential equation is of third order on the
(z1,t1) scales and first order on the (z3,t3) scales. We ob-
tain a Korteweg—de Vries equation that may be coupled
to a Schrédinger-type equation for the optical field. For
the sum frequency problem, second-order perturbation
theory produces the main results, which are analogous
to the fundamental to second-harmonic wave interaction
problem. However, the resulting three interacting non-
linear Schrédinger equations will change form, depend-
ing upon the phase-matching efficiency. These evolution
equations are dominated respectively by quadratic or cu-
bic nonlinearities if the phase matching is efficient or in-
efficient.

In order to avoid rewriting redundant equations, the
derived canonical evolution equations will be expressed in
dimensional or physical variables. That is, the resulting
dimensionless far-field evolution equations obtained from
MMS dependent on the slow time and distance scales
will be converted back to the original time and distance
variables and the subsequent physical variables. (This is
also useful for experimental and numerical results.) If it
is necessary, one may infer the multiple scale dependence
by the order of the derivative as described in the preced-
ing paragraph. For details on how to apply MMS theory
and convert from dimensionless to dimensional variables
for the optics signaling problem presented, the reader
should consult [4,11]. A general treatment of MMS is
given in [5]. As mentioned before, the two- and three-
input wave problem is a generalization of the single-input
wave problem given in [10,11]. We will at first present
the most robust coupled equations derived from MMS
and then discuss various analytic solutions or analytic
approximations. We shall also discuss relevant simpler
systems of equations by neglecting certain terms of the
fully derived equations. Numerical results will be pre-
sented in a separate paper.

Here we discuss the notation used. The field vari-
ables (a,A,b) denote, respectively, the slowly varying
amplitudes of the fundamental harmonic, the constant
or low-frequency field, and the second harmonic for the
two input waves. Similarly (a,b,u) denote slowly vary-
ing field amplitudes at frequencies (w;,ws2,ws) for the
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three-input-wave problem. The reduced time coordinate
s = t — k/(w)x is consistent and has the same meaning
throughout the manuscript. Corrections to s are denoted
by variables such as §, s;, etc.

III. THE FUNDAMENTAL HARMONIC
AND CONSTANT FIELDS

The fundamental harmonic field with slowly modu-
lated amplitude a is incident upon a quadratic nonlinear
medium immersed in a constant electric field A. The po-
larizations are all in the same direction. The total applied
electric field in the medium is expressed as

E=ae+a*e™™ +4, (17)

with § = k(w)z — wt dependent on the (zo, o) scales and
a dependent on the slow scales. Here Eq. (17) is written
in dimensional form. We assume that the parameter o
shown in Eqgs. (2) and (5) is one. The following O(e)
evolution equation is obtained from MMS for the slowly
modulated field a,

da Ok Oa

%-f—% ;9—2+qu¢1=0, (18)
with
deqwiw?
q > p . (19)

- k(w)Nec?wd(wi — w?)?

The plasma frequency is w, and the other variables have
already been defined in Sec. II. The solution to Eq. (18)
is obtained by the method of characteristics:

a=E(s) etale | (20)

with the reduced time s =t — k'(w)z. The envelope £ is
constant along s. We may interpret the phase factor g4
as an O(e) correction to the wave number k(w). That is,
we have a new effective wave number k(w) = k(w) — gA
dependent upon the applied constant field A.

At second-order perturbation theory, we find the dom-
inant evolution equation for the slowly modulated field
E given in Eq. (20),

8, (O B8qg \OE 1, | &

—B(W)[1 + g(w)]|EIPE + BLA%E = —i@ E. (21)

The following coeflicients are defined as

(29)12 (w2 — 4w?) (W2 — 6w?
Alw) = g o= (cgwf,:jgkzi)o o) ’ (22)
o(w) = ™ (23)

(wg — 6w?)wZc? [vlf - ?%;’—)]
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kc?(3wi — w?) (w2 — w?) 1
2 0 0
= - =1, 24

Pr=4 wiwiw? 2k (24)
the absorption coefficient o(w) is
w®lw?

o(w) = (25)

(wi — w?)2k(w)’
where I' = €27, and the second-harmonic generation co-
efficient d(?%) is

dNe?

d(Zw) — .
2m? (w2 — w?)2(w2 — 4w?)eg

(26)

Note that m is the electron mass, vg(w) = k'(w)™?, and
V is the phase velocity of a rectified O(e) field.

Equation (21) is the nonlinear Schrédinger equation
that includes the effects of a constant field A. There is
an O(e) correction to the group velocity that is linear in
A and a correction to the phase of £ that is quadratic in
A. Note that if A is set to zero, we recover the nonlinear
Schrédinger equation for quadratic nonlinear dispersive
optical materials that was derived in Refs. [4,10,11]. The
one-soliton solution to Eq. (21) for o = g = 0 with given
peak amplitude & is

3 1/2 . .
5 = 80 sech (l k”(w) SO ’s"> 6—1(550/2—ﬁ1A )EJ (27)
with characteristic
o
g‘“(%‘%*‘)w- (28)

For A = 0, Egs. (27) and (28) reduce to the one-
soliton solution given in the above-mentioned references.
Note that at O(e?) for the total fundamental harmonic
field, we replace £(s) with characteristic s in Eq. (20) by
the field given in Eq. (27) with characteristic § given by
Eq. (28). The application of a constant electric field does
not change the relationship between the soliton peak am-
plitude and pulse width or soliton period. Thus, for the
the same experimental conditions for KTP, as shown in
Refs. [10,11], when a peak field amplitude is 5.0 x 107
V/m and the corresponding pulse width is 0.1 psec, then
these imply that the soliton period is still 8.9 cm. How-
ever, the soliton does propagate at a different group ve-
locity.

If we analyzed a medium with intrinsic cubic nonlin-
earity immersed in a constant field instead of a quadratic
nonlinear material, we would have to replace the eP?
terms in Egs. (2) and (5) by €2P3. Using the same
MMS procedure as before, we find that at O(e), ¢ = 0
in Eqs. (18) and (20). There is no correction to the
wave number. At second-order perturbation theory,
there is no correction to the group velocity and hence
5 = 5. The one-soliton solution Eq. (27) only has the
phase delay (;A2. Of course, B; is different for a cu-
bic material and is different from Eq. (24). Instead
Br = knz[(w§ — w?) /wi]?/n.
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IV. THE FUNDAMENTAL HARMONIC
AND SLOWLY VARYING dc FIELD

The same fields are applied as in the previous prob-
lem but we allow the dc field A to be slowly varying on
the (¢1,z1) scales. We assume also that A is so slowly
modulated that its group velocity is essentially the phase
velocity because the pulse is essentially monochromatic.
To derive a canonical system of equations that balances
dispersion with nonlinearity, we consider the case of short
to long wavelength resonance whereby the phase velocity
v of A is nearly equal to the group velocity vg(w) of the
fundamental field a. In this asymptotic regime, we also
assume the peak pulse amplitude is slightly weaker so
that € defined by Eq. (4) becomes €2 where o = 2, in-
stead of one as in the previous section. This new choice
of o enables quadratic nonlinearities (instead of cubic)
to be balanced with dispersion. Note that from Eq. (4)
we could keep the peak power the same as before but
use narrower pulse widths to change « from 1 to 2. The
change in peak pulse amplitude to its respective pulse
width results in different asymptotic equations. Using
MMS, we proceed to O(e?) for the fundamental field a
whereas for the dc field 4, we begin at O(e2?) and continue
to the O(e?) perturbation level.

We find that at O(€), the optical frequency wave obeys
the first-order equation

Oda 1 0
oz + vg(w) Ot (29)
Equation (29) shows that the envelope a propagates with
its group velocity vg(w) and is constant along the char-
acteristic s = ¢ — k'(w)z. However, at second-order per-
turbation theory, we find that a instead obeys

i(é%“Lkl(“’)gi) % ()8t2

—qAa + ii(é‘—"la =0. (30)
The coefficients o(w) and ¢ were previously defined in
Egs. (25) and (19) in the optical frequency regime. In
general,

_ w?x@ (w;0,w)
- 2¢%k(w)

if we use the integro-differential equation obtained from
Egs. (3) and (6). Physically, Eq. (30) describes an
O(e) deviation from the characteristic solution given in
Eq. (29). Here a is no longer kept constant along char-
acteristic s. Equation (30) is a nonlinear Schrédinger
equation with a quadratic nonlinearity that couples the
optical field to the slowly varying field.

Applying MMS to the dc field, we find that at O(e?)
and O(e3) A obeys the wave equation

(ﬁz——la—z)Azo, (31)

dr?2  vZ Ot?

with v = ©/k(@). We see that A propagates with the
phase velocity v. At O(e*) perturbation theory, we find
that now A is described by

a 190 o° 9 ., ., s
(6:1:+113t)A—b13 A+b26A +b3 Ial =0.

(32)

If we approach the infrared resonance, but do not cross
it, we may derive Eq. (32) from Eq. (5), but if we do
cross the resonance band, we must start with Egs. (3)
and (6). This changes the coeflicients by, b2, bs. We will
at first give the general form of the coefficients and then
the restricted form derived from Eq. (5):

bl:n/l(&})z v . 32._1 ,
2c 2c2wi \ v?
_ 2 _ quk (wi —w?)?
ba = 5 X (010, -0) = ~TF SR
vkq
ba= 5 XD (05w, —w) = —

Equation (32) may be interpreted physically as an
O(€?) correction to the characteristic solution of Eq. (31).
At this level, A is no longer constant along the charac-
teristic t — z/v. The velocity of propagation of A is no
longer v, and will depend on the amplitude of A. Equa-
tion (32) is a Korteweg—de Vries (KDV) equation for A
with a source term obtained from the optical field. It
is coupled to Eq. (30) and they must be solved simul-
taneously. The system (30) and (32) is analogous to the
system derived for electron plasma waves interacting with
ion acoustic waves in [18] and long waves interacting with
short waves in capillary-gravity waves in [19]. It must
be stated that in using MMS, the Boussinesq equation
analogy may be derived instead of the KDV-like equa-
tion (32). The Boussinesq equation reduces to Eq. (32)
asymptotically for waves traveling in one direction.

We seek some special solutions to Egs. (30) and (32).
We are interested in solitary-wave solutions. First, we
note that if @ = 0, we have the KDV equation. For
b; > 0 and by < 0, we find that the one-soliton solution
to Eq. (32) for the imposed conditions is

A0b2 1 2
—Zz+ZbA
6 b1 (t v(l) + 3 2 0$)

A = Agsech?® ,  (33)

where the initial amplitude 49 > 0 at £ = 0. For these
conditions we use the plus sign for the Apxz term. The
one-soliton solution also exists if b < 0, b, > 0, and
A > 0, but we use the minus sign [in Eq. (33)].

The coupling of Eq. (30) to (32) is strongest if the
group velocity vg(w) is very close to the phase velocity v.
We now assume both fields a, A are nonzero, o(w) = 0,
and vg(w) — v ~ €. We present a solitary-wave solution
from [18,19]. We assume a reduced time 7 = t — Az
and reduce Egs. (30) and (32) to ordinary differential
equations in the manner done in [18,19]. For the case
g > 0,k"(w) < 0,b; < 0,b2 > 0, and bz > 0, it can be
shown that
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a = agd%sechértanhdre®”,

"
A= —M52sech26r , (34)
with
18k" (w) ( by k" (w)
2 — b
%o q b3 ( 2
and

2 qA0 [b2 1 N\?, ., 2
é Tk (w) %_(W_;> /[k (W)]".

Here Ay is an integration constant that must be positive
enough so that §2 > 0. The constant Ag is the initial
amplitude of A. The inverse phase velocity A is

"
A= 1_ 82 (Sk—(“’)b2 + 2b1> + +/2b3by Ay .
q

(Y

Finally, the phase factor ¢ in Eq. (34) is given

b=— (% _ A) [k (w) .

The same sort of solitary-wave solution may be obtained
for parameters of negative sign. That is, for ¢ < 0, b < 0,
bs < 0, by > 0, and k" (w) > 0, we obtain Eq. (34), but
¢ is negative and the inverse phase velocity A has all
positive signs.

Another solution similar in form inspired by but not
discussed in [18,19] may be obtained if vg(w) # v and
vg(w) — v ~ 1. We reduce the coupled system (30)
and (32) to a pair of real second-order ordinary differ-
ential equations by adjusting the phase of the optical
field a to include two parameters r, h instead of ¢. This
change gives an additional degree of freedom to ensure
real solutions. We assume that a = a(s;)e!("*+"®) and
A = A(s;) with s = t — k'(w)z and s; = s — Az. We
choose r = A/k”(w) and then substitute the assumed
forms into Egs. (30) and (32) to obtain real coupled or-
dinary differential equations with independent variable
8;:

- 2 2h - 2qAa

a" + (r T o)) 2= ) (35)
X4k (w) — 2 b b

A"+ (-—————+ IET) v) A=am+ e’ (36)

A solution a(s;) = agsech ds; tanh ds; and A =
Agsech®ds; exists provided the following compatibility
conditions hold:

8% = (r2+%)
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The parameters X,d§2,a2, A2 must be real and positive.
The parameter h must be real but may also be negative if
needed. We choose h to make sure that there are no con-
tradictions. The parameters A, 62, a2, h may be expressed
in terms of Ap, which is arbitrary. Also note that the so-
lutions to Egs. (35) and (36) also hold if v4(w) = v. Note
that by choosing the phase factor for field a to depend on
rs+ hx rather than the reduced times § or 7, we are able
to obtain solutions where vg(w) # v. We chose param-
eters r, h so that Eq. (35) is real and the resulting solu-
tions are real. This procedure to reduce systems of com-
plex valued partial differential equations to real ordinary
differential equations by appropriate choices of phase pa-
rameters is used throughout the text. The phase factor
compensates so that the envelopes of Egs. (35) and (36)
propagate with inverse velocity X\. We now discuss some
other types of solutions for the case when vg(w) —v ~ 1.

Under appropriate conditions, the problem simplifies
somewhat if there is no short to long wave resonance,
or vg(w) —v ~ 1. We may decouple Egs. (30) and (32)
using the fact that Eq. (32) is an O(e?) correction to the
characteristic solution of Eq. (31). In this regime, we
neglect the change in A and assume that it is known and
propagates with phase velocity v. Equation (30) alone is
sufficient to describe how the optical field a is influenced
by the low-frequency field acting as a known source term
thus making Eq. (32) linear.

Assuming A = @ sech?(sg), with sp = t — z/v,
o # 0,k"(w) > 0, and ¢ > 0, we find the corresponding
harmonic field is

—o(w

. . 1"
a=age 2 2 e the ¢isod/k (W)gech g, (37)

with initial amplitude ap and h = %” + ﬁ (ﬁ - %) .
It is interesting to note here that the solution (37) is ex-
pressed in terms of the characteristic of the low-frequency
field. In addition, if we increase A by a factor of 3, we
have to replace sech(sg) by sech(so)tanh(sp). Also, if we
neglect damping and group velocity dispersion by set-
ting o(w) = k”(w) = 0 in Eq. (30), we are left with a
first-order differential equation that can be solved using
characteristics. That is, Eq. (18) is obtained, but A is
not constant (as assumed before). If A = %‘ sechZsq,

with £o = (k'(w) — 1), we find that

a = £(s) e~amh% — £(5) exp (—iq/lo /0 ” Ads') (38)

with initial pulse £ propagating along the characteristic
s=1t— %le)w In this regime, the optical wave a propa-
gating in a quadratic nonlinear material may be used in
an interferometric configuration to detect the presence of
slowly varying (infrared or microwave) fields. The pres-
ence of the microwave A causes a phase change in the
optical field envelope a.

We have just shown how a sech?(t) pulse for the dc field
at the boundary interacts with the harmonic field a in
the various asymptotic regimes. Short to long wave res-
onance involves nonlinear dynamics, whereas away from
resonance, linear dynamics may be dominant under the
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appropriate conditions. If A is constant, under appro-
priate conditions, the dispersionless Eq. (18) is obtained
but the dispersive, cubic, nonlinear Schrédinger equa-
tion (21) cannot be rederived under this regime. This is
because field intensities and pulse widths were chosen to
balance dispersion with quadratic nonlinearities resulting
in Eq. (30). For constant A and zero damping, the so-
lution to Eq. (30) consists of a phase factor exp(—igAz)
multiplying a pulse profile exp{is?/[2k" (w)z)]}/ V.

V. THE INTERACTION OF FUNDAMENTAL
AND SECOND HARMONIC WAVES

Here we apply two electric fields respectively propagat-
ing at optical carrier frequencies w and 2w in the nonlin-
ear quadratic medium. The O(1) field E in the medium
is of the form

v2b pilk(2w)e—201]

VE(2w)

The O(e) perturbation level shows that each slowly vary-
ing envelope propagates with the respective group veloc-
ity associated with its harmonic and each envelope obeys
equations analogous to Eq. (29). The envelopes do not
interact until O(e?) perturbation theory. There are two
asymptotic regimes at this level that depend on the effi-
ciency of the phase matching. There is a system of equa-
tions for efficient O(e) phase matching that is different
from inefficient O(1) phase matching. When we consider
O(€) phase matching, we assume a certain relationship
between the pulse period and pulse intensity. The pulse
period is O(€) and the strength of the nonlinear terms
is O(€?) so that a = 2 in Eq. (4). Here « is chosen to
balance dispersion with quadratic nonlinearity. For O(1)
phase mismatch, we assume the pulse period is the same
as before but the strength of the nonlinear term is O(e),
which means @ = 1 in Eq. (4). This enables cubic nonlin-
earities to balance with dispersion. The phase mismatch
between wave numbers is given as Ak = k(2w) — 2k(w).
We first consider the case when Ak ~ e.

a i0

k(w)

FE =

+c.c. (39)

VI. O(¢) PHASE-MISMATCH EQUATIONS

MMS second-order perturbation theory with efficient
phase matching results in the following system [4] for the
fundamental and second envelope (a, b):

(0, L 0, Kl &
“\oz " v,(w) ot 2 9
_ geilkz oxp __,"_7_(2“"_),1, (40)
[ 0 1 0 k" (2w) 8?2
g L I Ay,
z(am +vg(2w) 8t) b 2 0t

— ke iAkE2 — _i____a(Zw) b, (41)

2
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with £ = 23/2 w2 d(2%) /[c?k(w)+/k(2w)]. Equations sim-
ilar to Egs. (40) and (41) for quadratic optical materials
are well known and were obtained by Akhmanov et al.
[20] using a different perturbation method. These equa-
tions may be considered degenerate three-wave-mixing
equations that include group velocity dispersion and
pulse walk-off effects. These equations are coupled non-
linear Schrodinger equations with quadratic nonlinear-
ities. The above equations are probably best studied
using numerical methods such as the split-step Fourier
method, but we will attempt to obtain solitary-wave so-
lutions analytically using various approximations. In all
cases, we neglect damping so that o(w) = o(2w) = 0.
At first, we review several solutions that neglect group
velocity dispersion terms.

For the time-independent problem, Egs. (40) and (41)
reduce to

0 _ . tAkz %

Fa0= "ike a* b, (42)
0 _ s —tAkz 2

%b = ke a . (43)

This system was studied by Armstrong et al. [21]. Re-
cently, De Salvo et al. [22] created new interest in this
problem when they experimentally observed intensity de-
pendent effects in quadratic materials due to what they
termed “cascading effects.” They were able to obtain a
complex Duffing equation with cubic nonlinearity by dif-
ferentiating Eq. (42) and utilizing the conservation law
|a|? + |b|? = A2 with Ag constant:
2
% a =iAk % + k% A2a — 2k%|a|?a . (44)
Upon further examination, with a = B ¢*" and (B,W)
real, we find that Eq. (44) may be reduced to the set of
equations

d’B Ak)? A
5oz = [KZA(Z) - %] B - 2x*B? + -B—; (45)
and
W A, Ak
% BT 2 (46)

where A; is a second integration constant. Equation (45)
can be integrated once to give

8B\* [ 2,2 (AK)?] 2 5 o0 A
(__a;) :[K,AO—— 1 ]B—RB_§E+A2’

(47)

with A, another constant. Equations (46) and (47) are
consistent with and contained within the work of Arm-
strong et al. [21] and may be solved by elliptic integrals.
Both Armstong et al. [21] and De Salvo et al. [22] uti-
lize the same conservation law in their respective but
equivalent approaches. It is interesting to note that for
A; = Ay = 0, the fields satisfy a signaling problem with
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a = Agsech (Aok ) ei%’i’,

Ak ~ ~ - Ak
b= ~or tAptanh (Agkz) where A2 = A(z) + >
Other solutions to the time-independent problem are

given in Refs. [21,22].

Now we consider the time-dependent problem neglect-
ing the group velocity dispersion terms in Egs. (40) and
(41). Since second-order time derivatives are neglected,
we may perform the transformation of variables

- [Ak( :1:):'
a=aexp |t — |t — — ,
V4 v1

with
£=1/vy —1/v1, va =v4(2w),v1 = vg(w) .
If we also define characteristics
=t—zx/vy, s=t—zx/vy,

we obtain

—e@=(3+1 2)&:-@*5, (48)

T ;Iat

b d 1 8\;
b—=|—+— = |b
s (am Vg 8t>
For many specific boundary value problems, the system
(48) and (49) may be solved by the inverse scattering
method [23] or from Backlund transformations [24].
Both methods show that due to the type of non-
linearity, under certain conditions, the pulses may ex-
change energy and change shape so that they are not
true solitons. Backlund transforms also generalize solu-
tions where there is no exchange energy. Under these
conditions, the pulses travel with the same soliton ve-
locity, but one pulse may be a soliton and the other a
shock wave. We will discuss this type of solution using
simpler methods. First, we assume that both waves prop-
agate with the same velocity v,, so that the reduced time
t, =t — z/v,. From this, the system (48) and (49) re-
duces to the stationarylike coupled ordinary differential
equations with a = a*:

ka® . (49)

1 1 o . 5
(-‘l: —_ E) a—t; = —nab 5 (50)
1 1\ 8 ;
— =) — b= . 51
(vz 'u,) ot,. b=ra (51)

The following conservation law is obtained:

Vg — V1 - Vg — V2 ~ Vg — V1 -
=~ l)at+ (2 )= a2
V1 Vs V2 Vs Vs V1

with @p = const, and is used to obtain the solutions
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a = agsech (do K1 tr) ,
b= _V2Us B @o tanh (@o k1 t.),
(Us - ’Uz)ﬂl
where
U1 U2

(vs — v1)(vs — v2)

k2 = (k v,)? [

These solutions were obtained by Armstrong et al. [25].
Bicklund transform also generalize these results [24].
The field @ propagates as a true soliton, but the field
b propagates as a shocklike solitary wave. These results
are slight generalizations of the time-independent case.
Note that the Duffing equation for @ may be obtained by
squaring and differentiating Eq. (50). Here the indepen-
dent variable is the reduced time t,..

Another interesting problem arises if we go back to the
system (48) and (49), using the characteristics 5, s. If we
assume @ = @* = eV and differentiate Eq. (48) by %, we
obtain the Liouville equation [26]

82U k2 ou
81783_1?26 . (52)
The solution is given in [27] using Backlund transforms
to convert Eq. (52) to the linear wave equation. The
solution of (52)

a2 = 2V — £ f'(n) g'(s)
262 [ f(n)/2+49(s)]?

is composed of the solutions of the linear equation con-
sisting of f(n) and g(s). We find that the quadratic non-
linear system (48) and (49) is robust enough to induce
cubic, inverse cubic, and exponential nonlinearities, de-
pending on the signaling problem.

For sufficiently short pulses, we must include group
velocity dispersion effects. We examine two particular
signaling problems that include these effects. In order to
simplify our analysis, we transform Egs. (40) and (41) i
the following manner: we let a = a,b=b e 4k g = 3,
and s =t — k'(w)z. This results in

e Hw) &

5z 2 8s2Treb, (53)
8 0 k" (2w) 82
i<£+£$> b— (2“’) 5oz bHARb=ka?. (59)

Note that £ = 1/v2—1/v; is the pulse walk-off parameter.
As an example, we seek special solutions of the form

a= &(5) ei(h:::+1us) , Q — I;(g) ezi(hm+re),

with § = s — z/v, and v, denoting the solitary-wave ve-
locity. Let k(w) < 0 and k"(2w) > 0. The variables
a,b and the parameters h,r,v, are real. If we choose

% and substitute the
special solutions into Egs. (53) and (54), we obtain real
coupled ordinary differential equations with respect to

the independent variable §:

— 1 1
T = TR and e =
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—1—k"(w) " —qa=kab

> (55)

- %k"(Zw) b +q2 b=k a2, (56)

where ¢; = [1'; k" (w) + h] and gz = [2r? k" (2w) —2rf —
2h + Ak]. We are free to choose parameter k to obtain
various solutions. For example, we may show that

@ = ag sech §3tanh 43 = —? Edg (sech 43)
and
b = —agsech?85 = —-9"5-0 % (tanh é3)
provided

2 K ao 2q1 92

=3 K (w)/ET(2w)  k'(w)  k(2w)

and 62 is positive. If r = Ak = £ = 0 and |k"(w)| =
|k"(2w)|, then ¢; = h and g» = —2h so that §2 =
3—":‘,(—:%37 = k,?—(';) The parameter h depends on the am-
plitude ag which is arbitrary. However, for the preceding
case, with nonzero r,£, Ak, we find that h and ag are de-
termined. Another example arises if we let k" (w) > 0;
then ¢ = h — 72 k"(w)/2. We may choose h so that
"k_"q(l‘.;_) = F%zz_w) Equations (55) and (56) may then be
reduced to a single equation of the form

~2

_ _ —K a
k"(2w) k7 (w)k” (2w)

" 5
~ 2 @
5 q

One solution to this equation is
g2 k" (w)

1/2
h2 q2 5.
K E2wY (4k”(2w)) s

Another interesting solution to Eqgs. (53) and (54)
arises in the nondepleted pump approximation, within
the efficient phase-matching regime. The second-
harmonic field b is assumed to be weak compared to the
fundamental field a. Hence we may apply perturbation
theory to Egs. (53) and (54) or the system (40) and (41).
Remember that MMS theory was used to derive Egs. (40)
and (41) from the medium Eqgs. (2) and (5). We apply
MMS again to solve Eqgs. (53) and (54). Here we assume

~ 3
a= —
2

a~1l, b~e K~E.
We assume that a is modulated in the form a =
dexpi[R(Q)z — Ns], where a depends on the slower time,
longer distance scales. O(1) perturbation theory shows
that the dispersion relation R(2) = k" (w)Q2/2 is obeyed
between the new wave number R(f2) and the new fre-
quency 2. Thus a depends on two frequencies w and
Q

The O(e€) perturbation shows that
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Kk @2 e2ilR(Q)z—Qs)

b= AR T 269 1 20 (20) — 2R(Q)]

and that & travels with the inverse group velocity
R'(2) = Kk'(w)Q so that ¢ = a(s,) with reduced
time s, = s — R'(Q)z. Second-order perturbation the-
ory resulting from MMS shows that the envelope a is
self-modulated because it satisfies the cubic nonlinear
Schrédinger equation

2
i%"—-%k"(w) aasga—[aﬁ:o, (57)
with the nonlinear coefficient defined as
5= 8w?[d?«))?
T {22k (2w) — k" (w)] + 2£Q + Ak} k2 (w)k(2w)

(58)
A solution to Eq. (57) is

a = ag sech (

for initial amplitude ag. The nonlinear Schrédinger equa-
tion (57), the effective intensity-dependent refractive in-
dex coefficient 3 [Eq. (58)], and the solution (59) may
be compared to the Schrodinger equation derived di-
rectly from the medium Egs. (2) and (5) as was done
in [4,10,11]. For our purposes, we may utilize Egs. (21),
(22), and (27), but now we must set the dc field A = 0.
We notice the 3 and 3 coefficients are different and that
B is parametrized by two frequencies w and Q2 whereas 8
is parametrized by only w. The characteristics (s,,5) are
also different and for A =0, § = s in Eq. (28).

The Schrédinger equations (57) and (21) were derived
under different asymptotic regimes. Equation (57) was
derived from Egs. (40) and (41) for two fields with effi-
cient O(e) phase matching. Equation (21) with zero dc
field A was derived from a single input field propagating
in a medium described by Egs. (2) and (5) with O(1)
phase matching. The total O(1) optical field for system
(40) and (41) is described by Eq. (39) with

B

k" (w)

1/2
aos,) e tBajz/2 (59)

= % ilR®)=—Qs] 8

T VEW)

ka2 e—ibke ei2[R(R)z—Qs] i[k(2w)z—2wt]
* VEQ@w)/2 [Ak +20Q + 2k" (2w)Q2 — 2R(Q)]
+c.c.,

(60)

with @ given by Eq. (59). Note that because of (2, the fun-
damental harmonic field in Eq. (60) has an extra phase
factor dependent on €2, which would be absent for the
field derived from Eq. (21). Equations (40) and (41) are
no longer valid if Ak ~ 1. Other equations describe the
a,b fields.

VII. O(1) PHASE-MISMATCH EQUATIONS

Again MMS will be useful in deriving unexpected re-
sults. In this regime, the quadratic nonlinearities are not
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resonant to the linear part of Eq. (5) and are not sec-
ular. They remain bounded source terms for the O(e)
fields. This is because the phase mismatch Ak ~ 1. This
may be illustrated by squaring a eilk(w)z—wi],

We then have a? el2k(@)z—2¢t] We may add and
subtract k(2w2w to the phase factor. Thus we have
a? e~ibke ilk(2w)z—20t]  If we further assume Ak = ep,
then Akz = epr = pzx;. Thus the Akz phase factor
depends on the longer distance scale ; = ex. The re-
maining phase factor depends on the original scales and
is secular to the linear left-hand side of Eq. (5) and
thus included in Eq. (41). When Ak ~ 1 the phase
term 2k(w)z — 2wt cannot be changed into k(2w)z — 2wt
on the fastest time scale in MMS theory. Therefore,
quadratic nonlinearities remain bounded for large phase
mismatch. At second-order perturbation, the O(€) non-
resonant quadratic nonlinearities induce secular cubic
nonlinearities by “wave mixing” as was shown in [10,11].
For inefficient phase matching, the field pulse widths and
intensities are chosen to balance these induced nonlin-
earities with dispersion so that the application of MMS
theory to the two fields of Eq. (39) propagating in a
quadratic medium described by Egs. (2) and (5) or (3)
and (6), leads to [4]

. 0 1., o
2£a—§k(w)@a

_B(w) |a?a — v1 [b2a = —@a . (61)

(8 d k' (2w) 82
z(—+l—)b— =

—2B(2w)[b|?b — v |a|?b = —@b . (62)

Equations (61) and (62)) represent an asymptotic wave-
wave process beyond cascading. Here we are in the coor-
dinate frame with reduced time s =t — /v, and £ is the
walk-off parameter defined for Eqgs. (53) and (54). The
following coefficients are defined for n = 1,2:

_ B(nw)
k(nw)

B(nw) [1+g(nw)], (63)

with B(w), g(w), and o(w) given, respectively, in Egs.
(22), (23), and (25). We may substitute 2w for w in
Eqgs. (23) and (25); however, we prefer to redefine 3(2w)
as

B(2w) = é [d(z“’)]z(wg - 24w2)(wg _ w2)4 60

3 wiwi(wd — 4w?)2c2k(2w)

because we keep d(?¢) in Eq. (26) dependent only on w.
That is, we keep the same value of d(®*) in Egs. (22) and
(64). The coefficients v4,v; are given as

vi=v+G, (65)
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2 2 2
vi (V% —wv;
Vg = 2 [V + Eg— (_V2 _“"v"%") G] ) (66)
with V the velocity of the O(¢) rectified field that comes
in at O(€3) perturbation theory. The g(nw) and G terms

include the higher-order corrections as shown in [11]. The
coefficients (G, v) depend on w in the following manner:

20,2 — 2)2 [d(2%)]2
G = 16 w?(wi — w?)? | ] ’ (67)
ct k(w) k(2w) wg [;1; — —qu]

2

—4w?

w} (w§ — w?)

vV =

Mo — )
c? k(w) k(2w) {
B 4uw? _4W?
w2(wg — w?)  wiwd
4w
(@3 — A D[k(o) = F(w); o]
32 wt
+ (wE — 9w?)D[k(2w) + k(w); 3w] } ' (68)

+

Note that the dispersion relation D[k(nw);nw] was de-
fined in Eq. (14) and is zero if the wave number & is a
function of the frequency that is used. In Eq. (68), we
have sums and differences of wave numbers substituted
for k(nw) and hence the function D is not zero as in
Eq. (14).

The system of equations (61) and (62) derived from the
two fields of Eq. (39) in the quadratic nonlinear medium
with O(1) phase matching is analogous to the cross-
phase-modulation equations of fiber optics [17]. Solu-
tions originally developed for fiber optics can be adapted
to this asymptotic regime. Note that if either a or b is
set to zero, we recover the single nonlinear Schrodinger
equation derived in [4,10,11]. Here the resulting equation
is equivalent to Eq. (21) for zero dc field A. If we con-
sider the nondepleted pump approximation, where b is
small [O(e)] compared to a, we actually solve the bound-
ary value problem that was given in [10,11]. The only
difference is that Eq. (62) for b would appear at a higher
perturbation level where the field a would appear as a
known function. In [10,11], it was shown that b prop-
agated unchanged along the characteristic with reduced
time (t — x/v2), where we neglected the group velocity
dispersion and nonlinear terms in Eq. (62). Therefore,
Eq. (62) provides on O(€) correction where b will no
longer be constant along the characteristic. Of course,
we neglected damping terms.

If we also neglect the second-order reduced time deriva-
tives associated with group velocity dispersion, we obtain
the conservation laws

These imply the solutions
a = a(s) e b=10 (s —£z) etz |

with
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= B(w)l|a(s)|?z + 11 Az |b(s — £z')|? dz’
and
b2 = 26(2w) |b(3)|%z + v, [)z |a(s + £2')|? dz’

with 3 = s — £z. The amplitudes a(s), 5(3) are constant
along characteristics s,5. The first terms in the phases
represent self-phase-modulation terms whereas the sec-
ond terms represent cross phase modulation. These solu-
tions are analogous to those in fibers [17] and may exhibit
asymmetrical spectral broadening. The pulse shapes re-
main unchanged as in fibers.

We now would like to examine Egs. (61) and (62) with
the group velocity dispersion terms. However, damping
terms are still set to zero. It must be noted that for v; =
+vs, k" (w) = k" (2w), and B(w) = 26(2w) = v; = 2v; the
coupled equations are solved using the inverse scattering
transform [28]. A popular numerical solution is the split-
step Fourier method. Here we will try to obtain some
special analytic solutions. We assume solutions of the
form

a=g(§1) ei(h1z+rla) , b =Q(§1) ei(hz:c'i-rga),

with reduced time §; = s — Az and )\ the inverse soliton
velocity. We choose parameters r;,72, by, b2 so that

= CA/K'(W), 2= (£—N)/K"(20) ,
k" (w k" (w .
o EE) i F)
" n
hg = ———k (22(4)) 7'2 —fry + k (22(4J) h;

The parameters h;, hy are respectively expressed in terms

of hi,h3. This leads to the following coupled real ordi-
nary differential equations with independent variable 5:
28(w) 2v; b%a
" h-u —
e +ha+ k" (w) a K (w) 0, (69)
46(2w) 2vy a?b
' +h5b b+ =0 . 7
Piah bt iy ¥ o) =0 (70)

For example, we may show that a = ag sechds; and b = by
sechd§; is a solution to Egs. (69) and (70) provided

Bw)
k"(w)

2V1bg
k"(w) )

h} = hy = —62%, 8% =

and
2 vy a2 2B(2w)bE

8% =
k" (2w) k" (2w)

The parameters 62,a2,b3,X must be real and non-
negative. The other parameters must be real. Note that
we have two extra parameters to the number of relations
or equations between them. We may further specify the
solution by choosing the value of one parameter and then
expressing the remaining parameters in terms of a fa-
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vorite parameter. For example, we may set A = 0, so
that 7, = 0 and 7, = £/k”(2w). Then we may determine
é,bo in terms of ag, which is arbitrary. Another solution
is possible if we choose h; = hy and A < 0. In this case,
A, 6,bp may be expressed in terms of a.

It is noted that a solution to Egs. (69) and (70) of the
form a = ao sech 65; and b = by tanh §5; also exists if
the following relations between parameters hold:

* __ 2 2 4 ﬂ(zw)
hl - _62 k”( ) bO’ h2 k”(2 ) 9
52 = ,B(w) 21, 4 B(2w) p2 4 202 a?
k”(w) k”(w) o~ k" (2w) k" (2w)

Again we may set A = 0 or pick h; = hj, depending on
our needs. Of course, the real and non-negative restric-
tions are the same as before. The above solutions are
interesting because we did not have to restrict ourselves
to equations with equal group velocities (v; = v3).

We conclude this section by reconsidering the non-
depleted pump approximation in a little more detail
where b is small compared to a. The approximate so-
lution the field a of Eq. (61) is

1/2
Bw) | aps | e—iP@adz/2,
k" (w)

a = agsech (

Therefore, |a]?> now enters as a known function in
Eq. (62). The field b is then assumed to be of the form

3 z+r : ¢
b= I_)(S) e‘(h’ +rat) with r2 = -kl—,(w—),
2 *
ha = § K1 + gy B3
Thus, b = bgsech ds if
. Bw)
hy = —6% = kn( )

b=+

k"(gw) ao [5((0) 2w ]1/2
4 0(2w) [K'(w) Kk"(2w)

For a specific signaling problem we find that the correc-
tion to the small second-harmonic field b does not prop-
agate at the group velocity v, but with v; of the given
field @ when nonlinear and dispersion terms are included.
We notice that b is proportional to a; substituting b back
into Eq. (61) does not induce a higher-order nonlinearity.
It only changes the nonlinear coefficient 8 to B+[const
v;]. We now see the differences in the nondepleted beam
approximation when there is O(e) phase matching as in
Eqs. (40) and (41) versus Eqgs. (61) and (62) when there
is O(1) phase matching. The dominant fields are gov-
erned by a single cubic nonlinear Schrédinger equation.
This equation is different for the two asymptotic regimes
discussed.
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VIII. SUM FREQUENCY GENERATION

So far, we utilized scalar properties of the medium. We
now allow anisotropic effects to occur by choosing waves
with different polarizations. As with second-harmonic
generation, sum frequency generation may be classified
into two asymptotic regimes that depend on whether
there is efficient [O(e)] phase matching or large phase
mismatch. We now consider the medium to be an or-
thorhombic biaxial crystal with class mm2 symmetry
(such as KTP). The efficient phase-matching regime may
be obtained by type-II phase matching for a biaxial crys-
tal in the y—2z plane. We choose two fields to be polarized
in the y direction and one field to be polarized in the z di-
rection. The large-phase-mismatch regime is obtained by
propagating all fields with the same polarization chosen
to be in the z direction. To simplify the derivations, we
assume that the nonlinear coefficients are independent of
frequency and Kleinman’s symmetry condition is valid;
given frequencies such that w3 = w; + w2 and polariza-
tions in the y—z plane, it can be shown [29] the nonlinear
polarizations have the form

Py (ws) = 4 day [Ey(w1) E.(w2) + Ez(w1) Ey(w2)],
P (w3) = 4 d3g Ey(w1) Ey(w2)
+4 dss E,(wl) Ez(wg) y (71)

where the d;; are constant. Thus, in deriving the equa-
tions we, at first, use the integral equation formalism of
the medium described by Egs. (3) and (6). The nonlin-
ear convolution part Eq. (6) reduces to Eq. (71) because
of the above assumptions. We now assume the phase
matching Ak = ka(w1) + k3(wz) — k2(ws) ~ €. The sub-
scripts 2 and 3 of the wave numbers refer to the fact that
the wave numbers are polarized, respectively, in the y
and z directions.

IX. O(e) PHASE-MISMATCH SUM FREQUENCY
EQUATIONS

Here we assume three slowly modulated electric fields
that depend on the frequencies w3 = w; + w2 and wave
numbers ks (w1 ), k3(w2), k2(ws) so that

E=a ei[kg(wl)w—wlt] +b ei[k;(wa)z—wst]

4y etlkswa)z—wat] | ¢ o (72)

Equation (72) is substituted into Egs. (3), (6), and (71)
and MMS perturbation theory is applied. Second-order
perturbation theory shows that the slowly modulated
fields a, b, u are described by the following coupled equa-
tions with zero damping:

8 , o kY (wy) 62
i <% + kg (w1) E) a= = 5z @

2 UJ% d24

bu* —ilAkz _ 73
c2 kz(w1) u- e 0, ( )
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" 2
i(g_+k£(w3) %)b_kz(ws) L

oz 2 ot?
2 w} dag idke _
Z ky(ws) e =0, (74)
(0 , 7] kY (w2) 62
i (% + k§(w2) a) u 3 5 v
2 w% d32

* —iAkz
s (wa) a*be =0. (75)
These equations are well known and expected from
quadratic nonlinear media and are obtained from various
perturbation methods besides MMS [20,30]. We will not
attempt to solve the above equations without approxima-
tions or simplifications. At first, we set the group velocity
dispersion terms kj(w;) = k% (w3) = k§(w2) = 0.

It must be mentioned that the resulting first-order sys-

‘tem of equations is solved using the inverse scattering

transform [31,32], which is different from that used for
second-harmonic generation. The Backlund transforma-
tion method may also be used [24], which generalizes the
results of Armstrong et al. [25] for three solitary waves
traveling at the same velocity. However, we are interested
in making two further simplifications. We set Ak = 0 and
assume kj(ws) = kj(wz2) = v; ' and kj(w;) = vy '. This
results in the reduced system of equations

o 1 0 . 2 w? day .

(£+v_1 a) a=i— %a(@1) bu*, (76)
o 1 8 . 2widy

<£+E ¢—9—t_) b—zc2 2 (ws) au , (77)
8 1 6 . ngdsg -

(&4"”—2 Bt) u—’l,cz ka((.dz) a*b . (78)

It has been shown in [25] that under these condi-
tions, the three-wave equations are equivalent to the self-
induced transparency equations for a medium with no
inhomogeneous broadening. Thus there exists a corre-
spondence between three-wave processes and a two-level
quantum optical system. With minor reinterpretation of
the fields it can be shown that Egs. (76)—(78) are equiv-
alent to semiclassical stimulated Raman scattering equa-
tions [33]. Thus there exists a correspondence between
three-wave processes and stimulated Raman scattering;
the stimulated Raman scattering equations can also be
reduced to the Maxwell-Bloch equations, as shown in Ref.

[33]. If we let 7 = — a2 (t—l)

vy —v2 vy )?
¢= ket (t —z/v1),F = ibu*
vy — Vg ’ ’
_ w§d24 * d;;zw%bb‘
= uu — N
kg (w:;) k3((4.!2)



52 ASYMPTOTIC WAVE-WAVE PROCESSES BEYOND CASCADING . .. 3179

then Eqs. (76)—(78) transform to

da OF 2w
5% = alF, 5{ = 02 a H,
8H _ (e D) - "
8—C = —c—z— [(l F +a F ]
with
2 wfd24 —a ay = 4 w§w§d32d24
c? ka(w1) T ks (we) kz(ws)

The above self-induced transparency equations may also
be solved by the inverse scattering transform [34]. From
these equations, it is noted that we have the following
conservation law: 8%(1’12 + a3|F|?) = 0. This suggests
that I = —cosf and ,/azF = sinf, where F' = F*.
This implies the sine-Gordon equation

820 2 U2 .
% = c—zal 51n0, (79)
with the field a = ﬁ g—g. Through this two-step

transformation, we have now shown that under appropri-
ate conditions, the three-wave process supports the sine-
Gordon equation. That is, the quadratic-type nonlineari-
ties induce sinusiodal nonlinearities. It is well known that
Eq. (79) is solvable by the inverse scattering method [34]
and by Bécklund transform [27]. The single kink solution
for Eq. (79) is

1 2
6 = 4 tan"lexp (ag C+ — vzzal 7_7> ,
aop C

which implies

c? 1 2v; p
= ech — 7,
a van/as ag s (ao ¢+ 0 2 77)

where ap is a constant. This hyperbolic secant solution
is different from the other solutions presented because it
depends on two reduced times.

Another interesting problem includes the effects of
group velocity dispersion on the system (73)—(75). For
simplicity, we also set Ak = 0 and kj(w3) = kj(w2) = i
In addition, we assume the two fields a,b are O(1)
and nondepleted, whereas the field v and the constants
d24,d32 are O(e) small. MMS second-order perturbation
theory is applied to find how the fields a,b are slowly

modulated. The fields a,b are given the form

a=a expi[Rz — 18], b= b expi[fi z — Q3s],

with @,b dependent on slower scales. These forms are
substituted into Egs. (73)—(75). Since u is small, at O(1)
perturbation theory, Egs. (73) and (74) are decoupled
and linear. This results in the respective dispersion rela-
tions for a,b: R = éz(z—wl—)ﬂf and R = £Q3 + 55'(7“’3—)%
At O(e), Eq. (75) is a linear equation for u with a
known nonresonant forcing term dependent on a*b. Thus
u = apd*b expi[(R—R)z—(Q3—Q;)s] with reduced time
s=t—wx/v and

2 w§d32

Qg =

Therefore, at second-order perturbation theory, we find
from Eqs. (73) and (74) that &, b are described by

[ 0 a\ .
(2 ('é; + k;’(uﬂ)ﬂl g) a

" 2 -
N @%a +anaolb’a =0, (80)

- 4\«

" 2 _ -
_ k3 (ws) é—b + azapl|d|?b = 0. (81)

2 Os?
2 wid 2 wid,
The constants a; = CT,:—;I(—;% and a3 = Z’T:i:(‘wi‘;) Note the

absence of self-phase modulation terms |a|?a in Eq. (80)

2ks(w2) [R —R— (05 — ;) — M) (o — 91)2]

and |b|2b terms in Eq. (81). Possible solitary waves are
obtained if we further assume that the fields have the
form

a = Q(Z) etlhiztrisi) , b= Q(Z) ei(h22+7‘281)’

with s; = 8 — kY (w1)Qz and ¢ = s; — Az. We choose
parameters in the following manner:

"
= MK G) s = D (2 pny,
£—2A K (ws) , 5 -
—f-A = h%) — fr,.
T2 ké’(wa) ) 2 2 (7'2 + 2) T2

The new walk-off parameter £ = [£ + kj(ws)Qs —
kY (w1)$?1]. Equations (80) and (81) reduce to the fol-
lowing ordinary differential equations with independent
variable C:

20120 124 — g, (82)

a’ +hta—
dHT )
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2030
b +hyb— 2= lal?b=0. 83
= 2 2 klzl(ws) l—l 2 ( )
A solution of the form a = aosech(JZ) and b = bosech(éf)
exists if the coeflicients of the nonlinear terms in Egs. (82)
and (83) are both negative. We find h} = h} = —4§2 and

2 _ 93 k3 (w1) - 2 . _@3% o
7 ay kf(ws) Ky (ws)

Note that E‘,;—‘,:’(%b < 0 so that 2 is positive. Solutions may
further be specified as in Egs. (69) and (70) by choosing
A = 0 or hy = hy. Equations (80) and (81) for the
non-depleted pump approximation were derived from the
sum frequency equations (73)—(75) which were in turn
derived from the medium equations (3) and (6). These
equations are valid for the O(e) phase-mismatch regime.
‘We now examine sum frequency equations for large phase
mismatch.

X. O(1) PHASE-MISMATCH SUM FREQUENCY
EQUATIONS

The three sum frequency equations derived from
medium equations (3) and (6) for O(1) phase mismatch
are beyond cascading and will be a generalization of
Egs. (61) and (62) in that cubic nonlinearities will be
dominant. In this regime, in order to ensure O(1) phase
mismatch, all three fields are polarized in the z direc-
tion. The wave number subscript 3 will be dropped. The
damping terms are zero. The application of MMS theory
under the above conditions yields the following coupled
partial differential equations for the slowly modulated
fields a,b,u of Eq. (72):

.0 k" 82 . =
s a— —_(5@ 92 0= —aolal®a — Bolb|?a — polul?a ,

(84)

(0 8 k" (wg) 82

= —,51|b|2b — ailal®b — p|ul?b, (85)

(8 d k" (ws) 82
’(5;+6£)“" 5 852"

= —pzul?u — B2|b|?u — @zlal?u . (86)

The above equations are expressed in terms of coordi-
nates (z,s = t — z/vg(w1)) propagating at the group
velocity vg(wy) of field a. The walk-off parameters are
given as

_1_. B 1 _ 1 _ 1
vg(w)  vg(w1) ' T vg(ws)  vg(wr)

The following coefficients are defined:

£y =
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. 4 d2, w? 4w? 8
Qg = + 1 1 )
k(wl)c4 4 kz((U1) - k2(2uJ1) ‘U;(wl) - vz
(87)

Fo = 4 d2; W2 2 w2
© 7 k(wr)et \ [k(wr) + k(2w2)]? — k2(ws)

+ 2(“’2 - w1)2 + 8
[k(w1) — k(w2)]? — k2 (w2 — w1) ?(1‘;2—) - % ?
(88)
_ 4 d350d 2(w1 + ws)?
Ho = Zlwi)et |Tk(wr) + k(ws)]2 — k2(wy + ws)
+ 2 wj b8 89
[(wn) — Bs)F — R2(wg) T i — e | )
o _ Ad3gw? 2 w2
V7 k(wa)e? | [k(wy) + k(w2)]? — k2(ws)
2[w; — wy)? 8
F o(wz) — Fw)]? — K2 (wy —w2) o Vg] ’
(90)
> 4d3; wi 4w? 8
,61 - k(UJz)C4 |:4k2((U2) _kz(zwz) + ;alz—w‘)‘ _ ‘_,17:| )
(91)
_ 4d}5 w3 2(wz + w3)?
F1= Fwa)er | k(wa) + k(ws)]2 — k2(wz + ws)
2 w? 8
+wwa—umm—wwa+ﬂ¢ﬂ—%}’””
G = 4d3;w3 2(wy + ws3)?
27 cik(ws) | [k(w1) + k(ws)]? — k2(wy + ws)
2((4.)2)2 8

T h(ws) = k(@) — F2(ws) | oot

1
v; (w1) \

] » (93)

3 — 4d§3w§ 2 (we +w3)2
2 ct k(wg) [k(wz) + k(w3)]2 _ kz(wz ¥ ws)
+ 2 ""12. 4 8
(k(ws) — k(w2)]? — k2 (w1) oy —ve | (54)
M2 = — 2 2 + 1 s .
ctk(ws) | 4k?(ws) — k2(2ws) T — v

(95)

Solutions are easily obtained if all the pulses are wide
enough to neglect the second-order reduced time deriva-
tives (in s). For each field, there is one self-phase and
two cross-phase-modulation terms. The solutions have
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the form
a=a(s) e, b=>5(3) &% , u=u(s) e,

with § = s — #;z and s = s — £yz. The phases are

[

b1 = —ola(s)%z — Bo / 1b(s — £1)[*dy

—#o/.lms—fwﬂ%y,
0

N

b2 = —ub(3)*z — & /0 " (s + ) 2dy

—m / ulE — (L2 — £)y]?dy,
0
and

$s = —pslu(s)|*z — & / la(s + £29) [*dy

B, / 1bls + (£2 — £)y]dy -
1)

Here we expect spectral broadening phenomena.

The solution changes somewhat if group velocity dis-
persion terms are included. A solution to Eqs. (84)—(86)
is obtained if we assume the following for the fields a, b, u:

a= &(Cl) ei(ns—}»hlm) ,
b= E(Cz) ei(rgs+h3:c) ,
= ﬂ(Cz) ei(raa+h3:n),

with (; = s — Az. The parameters r1,72, 73 are chosen to
be

ry = —Ak"(w1) ,
re = (€ — A) /K" (w2) ,
T3 = (lz - A)/k”(wg) .

The parameters hi,hz,hs are rescaled in terms of
hi,h3, h} so that

n kll
hy= & (2“’f) ri+ (2“’1) T
k" (w k" (w .
hy = (22)7%—517‘2'1- (22) 2
k/l kll
h3 = —_(2“)3) Tg — £2 T3 + ____(2“)3) h; .

The system (84)—(86) is reduced to the following coupled
ordinary differential equations (in variable (;):

~ * ~ 2 ~ 1512 3 1512 ~ ~
&0} 6= g (B0 Jaf + Bo B + o [al7) &
(96)
B4 hy b= s (@ Jal? 4 B 7+ ) B
2 k" (w3) ’
(97)
@Ry = (G2 12+ Bz B2 + 2 [af?) @
3 k”(wa)

(98)

One may show that @ = agsechd(, b = bgsechd(, and
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4 = ugsechd(. The following relations must hold between
parameters:

hi = hy = by = -4,

1 ~
2 _ ~ 2 2 2
0 __——_k"(wl) (ao ao+ﬁ0 bo+ﬂ0 uo) s
1 - ~
62=—m (a1 a§+ﬁ1 bg+ﬂ1 ug) 5
1 ~
2 __ ~ 2 2 2
é ——kT,(w—s) (azao-}-ﬂzbo-{'/]/zuo) .

Here again, ),d2%,a2,b2,u2 must be real and positive.
Thus the solution exists for various values of the known
coefficients &;,0;, ui, etc. The solution may be further
specified if A = 0, or h; = hg, or hy = hs, or hy = hg,
for example. The above relations are then expressed in
terms of one parameter, say, ag. This was just one type
of solitary-wave solution presented where all waves prop-
agate at the same velocity A™! or vg(w;) depending on
the initial signaling problem. A numerical method must
be applied for different propagation velocities of the wave
amplitudes where there are no compensating phase fac-
tors for the envelopes a, b, u.

XI. CONCLUSIONS

Several problems with multiple input waves propagat-
ing in a quadratic nonlinear medium were discussed. The
first problem analyzed was the interaction between an
optical field a and a constant electric field A. The pulse
width and intensity were chosen to balance dispersive
and cubic nonlinear terms. This resulted in a nontradi-
tional, asymptotic wave-wave process for quadratic non-
linear materials. The cubic nonlinear Schrédinger equa-
tion for field @ was obtained where the wave number and
group velocity depended on the constant field A as shown
in Egs. (21)—(28). The constant field A was then al-
lowed to slowly vary and short to long wave resonance
Egs. (30) and (32) were derived. Here the field pulse
widths and intensities were chosen to balance dispersive
and quadratic nonlinear terms. Several solitary-wave so-
lutions were then discussed for near and away from short
to long wave resonance.

The interaction of fundamental harmonic and second-
harmonic optical waves was then examined. There exist
two asymptotic regimes for these optical frequency waves
propagating in a quadratic nonlinear medium. These
regimes depend upon the the phase-matching efficiency.
The first regime occurs when there is O(e) phase mis-
match between the waves. In this regime, quadratic
nonlinearities dominate as shown in traditional equa-
tions (40) and (41). The balance between dispersion
and nonlinearity depends on the field pulse widths and
intensities. These quadratic nonlinearities may induce
cubic, inverse cubic, and exponential nonlinearities de-
pending on the signaling problem. Solutions were given
when group velocity dispersion was neglected and in-
cluded. It was also shown under what conditions it is
possible to derive the Liouville [Eq. (52)] and cubic non-
linear Schrédinger equations [Eq. (57)]. It is noted that
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the Schrodinger equation (57) is different from Eq. (21)
in several respects, the most important being that Eq.
(57) was derived from Egs. (40) and (41). The other
Schrédinger equation (21) was derived directly from
medium equations (2) and (5), which is an asymptotic
wave-wave process beyond traditional three-wave reso-
nance.

The second regime for interacting fundamental and
second harmonics occurs when there is O(1) phase
mismatch. This results in coupled cubic nonlinear
Schrodinger equations that are analogous to cross-phase-
modulation equations of fiber optics; the results are dis-
played in Egs. (61) and (62). In this case the field pulse
widths and intensities were picked so that it was pos-
sible to offset dispersive effects with cubic nonlineari-
ties. Again, solutions were given for signaling problems
that included and neglected group velocity dispersion.
The nondepleted pump approximation was discussed and
shown to be consistent with [10,11]. The two-input-wave
problem resulting in Eqgs. (61) and (62) is a natural gener-
alization of the single-input-wave problem of [10,11] and
this is another asymptotic wave-wave process beyond tra-
ditional three-wave resonance.

The final set of problems dealt with sum frequency gen-
eration. Three interacting optical waves were studied in
the two asymptotic phase-mismatch regimes considered
for harmonic generation. The first asymptotic regime
again involved O(e) phase mismatch. This resulted in
traditional equations (73)—(75), where quadratic nonlin-
earities dominate. When group velocity dispersion was
neglected, it was shown how, under appropriate condi-
tions, the three-wave resonance equations transform to
the semiclassical stimulated Raman scattering equations
and to the self-induced transparency equations and then
the sine-Gordon equation (79). Thus the quadratic non-
linearity may also induce sinusoidal nonlinearities. When
group velocity dispersion was included, two waves were
assumed to be nondepleted. This resulted in cubic-type
Schrodinger equations [Egs. (80) and (81)]. These are dif-
ferent from Eqgs. (61) and (62) because they were derived
from Egs. (73)—(75) and not from the medium equations
(2) and (5). Also, the self-phase modulation terms are
missing from Egs. (80) and (81).

The sum frequency equations were then derived for the
O(1) phase-mismatch regime. This resulted in wave-wave
processes beyond cascading by Eqgs. (84)—(86) which are
cubic Schrédinger equations and are natural generaliza-
tions of (61) and (62) and therefore the three-wave gen-
eralization of the single-input-wave problem of [10,11].
Analytic solutions were obtained when group velocity
dispersion terms were included and neglected. This re-
sulted respectively in solitary “sech”-type and spectral-
broadening-type solutions.

To achieve O(e) phase mismatch, the sum frequency
equations were allowed to have different polarizations
via type-II phase matching in the y-z plane. There-
fore, anisotropic effects were included. The O(1) phase-
mismatch equations are best achieved if all waves prop-
agate with the same polarization. It must be noted that
diffraction effects may easily be included as shown in
[4,10,11]. Thus there are many possible generalizations of
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the problem discussed. For example, equations for wave
guides may be developed that differ slightly from the bulk
medium equation in dispersive properties. The evolu-
tion equations depend upon the efficiency of the phase
matching. O(e) phase matching results in wave-mixing
processes where quadratic nonlinearities dominate. O(1)
phase matching results in wave-mixing processes where
cubic nonlinearities dominate. This distinction between
phase-matching regimes also applies to IV input waves
where N > 3.

Many aspects of multiple-wave problems were covered
in this paper. It was interesting to learn how quadratic
nonlinearities induce higher-order nonlinearities in the
various problems discussed. Applying a self-consistent
perturbation theory to nondepleted pump approxima-
tions resulted in induced cubic nonlinearities. Nonlinear
variable transformations resulted in transcendental non-
linearities. MMS perturbation theory was a useful tool
for deriving the various wave interaction equations that
occurred in the different asymptotic regimes. It was also
helpful for obtaining solutions to the nondepleted pump
approximations that arose in the O(€) and O(1) phase-
mismatch regimes. MMS was able to derive equations
not. usually associated with quadratic nonlinearities be-
cause it is a self-consistent technique that can be carried
to any perturbation order.

SVEA is only able to derive equations with the lowest-
order nonlinearity as was discussed in [4,10,11]. It
must be mentioned that Egs. (40) and (41), and (73)—
(75) may also be derived by SVEA since they involve
the lowest-order (quadratic) nonlinearity. However, the
higher-order induced cubic nonlinearities require MMS.
As shown in [4,10,11], the induced cubic nonlinearity
arises because of wave mixing of an O(1) field with an
O(e) field at second-order perturbation theory. The or-
der O(e) field itself is stimulated by the presence of a
“squared” O(1) field that acts as a known forcing term
at the O(€) perturbation order. The cascading effect dis-
cussed by De Salvo et al. [22] is also interpreted as an
effect arising from wave mixing between O(1) and O(e)
fields that resulted in the induced higher-order nonlinear-
ities for the nondepleted approximation problems that
arose from Egs. (40), (41), and (73)—(75). This wave-
mixing effect is not limited to the traditional three-wave
resonance equations (40) and (41) and (73)—(75), but also
applies to the medium equations (2) and (5) or (3) and
(6), from which the O(1) phase-mismatch regime (beyond
cascading) is also constructed. The time-independent,
three-wave resonance problem described by Egs. (42) and
(43) may be viewed as wave mixing between two O(1)
fields. This resulted in a cubic Duffing oscillator for one
of the fields that is consistent with the elliptic integral
formalism of [21]. Wave-wave interaction or wave mixing
provides a feedback mechanism that is responsible for all
nonlinear effects observed including self-modulation ef-
fects. It applies to all the evolution equations that were
derived from the medium equations (2) and (5), or (3)
and (6). As defined by [22], cascading appears to be
wave-mixing effects restricted to the subset of traditional
three-wave resonance evolution equations (40), (41), and
(73)—(75). We have shown that there are asymptotic
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wave-wave processes beyond cascading and beyond tra-
ditional three-wave resonance equations in quadratic ma-
terials.

Some interesting analytic solutions to the asymptotic
evolution equations were obtained by reducing the com-
plex valued systems of partial differential equations to
real coupled ordinary differential equations. This was ac-
complished by appropriate choices of phase parameters.
Compatibility conditions were also given to ensure real
solitary wave solutions. This technique enabled us to ob-
tain analytic solutions with nonzero walk-off parameters
and nonzero group velocity dispersion.

The quadratic nonlinear medium, described by Egs. (2)
and (5), or (3) and (6), is a rich source of different
types of evolution equations. A few asymptotic equa-
tions were derived for multiple input waves propagating
in a strongly dispersive but weakly nonlinear optical ma-
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terial. There are yet other asymptotic regimes that may
be studied. The classical quadratic medium may also be-
have as a cubic medium or a two-level atomic system cou-
pled to a strong optical field depending on the problem.
MMS has proven to be a very useful self-consistent tech-
nique for obtaining various asymptotic evolution regimes.
The theory presented here may be used to model specific
x® materials in order to design new experiments and
interesting pulse-shaping applications beyond harmonic
generation.
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